航空学报 > 2024, Vol. 45 Issue (16): 329712-329712   doi: 10.7527/S1000-6893.2023.29712

基于固定时间收敛误差动力学的微分几何制导律设计

白显宗1, 黎克波2,3(), 李昊键2,3, 董伟4   

  1. 1.军事科学院 国防科技创新研究院,北京 100010
    2.国防科技大学 空天科学学院,长沙 410073
    3.空天任务智能规划与仿真湖南省重点实验室,长沙 410073
    4.北京理工大学 自主智能无人系统全国重点实验室,北京 100081
  • 收稿日期:2023-10-12 修回日期:2023-11-20 接受日期:2024-01-29 出版日期:2024-02-05 发布日期:2024-02-05
  • 通讯作者: 黎克波 E-mail:likeboreal@nudt.edu.cn
  • 基金资助:
    国家自然科学基金(12002370)

Differential geometric guidance law design based on fixed⁃time convergent error dynamics method

Xianzong BAI1, Kebo LI2,3(), Haojian LI2,3, Wei DONG4   

  1. 1.National Innovation Institute of Defense Technology,Academy of Military Science,Beijing 100010,China
    2.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    3.Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,Changsha 410073,China
    4.National Key Laboratory of Autonomous Intelligent Unmanned Systems,Beijing Institute of Technology,Beijing 100081,China
  • Received:2023-10-12 Revised:2023-11-20 Accepted:2024-01-29 Online:2024-02-05 Published:2024-02-05
  • Contact: Kebo LI E-mail:likeboreal@nudt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12002370)

摘要:

提出了一种具有固定时间收敛特性的微分几何制导律设计方法。首先,提出一种新的固定时间收敛误差动力学方法的控制参数选择机制,将控制参数从4个缩减为3个,并给出更为准确的误差收敛时间上界。其次,针对固定目标打击制导问题,基于古典微分几何曲线原理,将固定时间收敛误差动力学方法拓展至弧长域,提出固定路程收敛微分几何制导律设计方法。然后,分别针对碰撞角控制制导和飞行路程控制制导问题,设计了相应的固定路程收敛微分几何制导律。最后,通过数值仿真,对所提方法的有效性进行了验证。

关键词: 误差动力学, 古典微分几何曲线原理, 固定时间收敛, 固定路程收敛, 微分几何制导律

Abstract:

A differential geometric guidance law design method with the characteristic of fixed-time convergence is proposed. Firstly, a new control parameter selection mechanism is presented for the recently proposed Fixed-Time convergence Error Dynamics (FxTED) method. The number of control parameters are reduced from four to three, and a more accurate upper-bound of the error settling time is obtained. Secondly, for the guidance law design problem against stationary targets, the FxTED method is extended to the arc-length domain based on the classical differential geometry curve theory, and the differential geometric guidance law design method with the property of fixed-range convergence is proposed. Then, to address the problems of impact-angle-control guidance and flight-range-control guidance, two fixed-range convergence differential geometric guidance laws are designed. Finally, the effectiveness of the proposed method is verified through numerical simulation examples.

Key words: error dynamics, classical differential geometry curve theory, fixed-time convergence, fixed-range convergence, differential geometric guidance law

中图分类号: